University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 2

Answer

$$\int \theta\cos\pi\theta d\theta=\frac{\theta\sin\pi\theta}{\pi}+\frac{\cos\pi\theta}{\pi^2}+C$$

Work Step by Step

$$A=\int \theta\cos\pi\theta d\theta$$ Take $u=\theta$ and $dv=\cos\pi\theta d\theta$ We then have $du=d\theta$ and $v=\frac{1}{\pi}\sin\pi\theta$ Apply the formula $\int udv= uv-\int vdu$, we have $$A=\theta\Big(\frac{1}{\pi}\sin\pi\theta\Big)-\int\frac{1}{\pi}\sin\pi\theta d\theta$$ $$A=\frac{\theta\sin\pi\theta}{\pi}-\frac{1}{\pi}\int\sin\pi\theta d\theta$$ $$A=\frac{\theta\sin\pi\theta}{\pi}-\frac{1}{\pi}\Big(-\frac{1}{\pi}\cos\pi\theta\Big)+C$$ $$A=\frac{\theta\sin\pi\theta}{\pi}+\frac{\cos\pi\theta}{\pi^2}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.