University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 11

Answer

$$\int\tan^{-1}ydy=y\tan^{-1}y-\frac{1}{2}\ln(1+y^2)+C$$

Work Step by Step

$$A=\int\tan^{-1}ydy$$ Take $u=\tan^{-1}y$ and $dv=dy$ We then have $du=\frac{1}{1+y^2}dy$ and $v=y$ Apply the formula $\int udv= uv-\int vdu$, we have $$A=y\tan^{-1}y-\int\frac{y}{1+y^2}dy$$ Take $z=1+y^2$, we then have $dz=2ydy$, meaning that $ydy=\frac{1}{2}dz$ That means $$A=y\tan^{-1}y-\int\frac{\frac{1}{2}dz}{z}$$ $$A=y\tan^{-1}y-\frac{1}{2}\int\frac{1}{z}dz$$ $$A=y\tan^{-1}y-\frac{1}{2}(\ln |z|)+C$$ Replace $z$ with $1+y^2$ back: $$A=y\tan^{-1}y-\frac{1}{2}\ln|1+y^2|+C$$ However, since $y^2+1\ge1\gt0$ for all $y$, we have $|1+y^2|=1+y^2$ $$A=y\tan^{-1}y-\frac{1}{2}\ln(1+y^2)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.