University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 5

Answer

$$\int^2_1 x\ln xdx=2\ln2-\frac{3}{4}$$

Work Step by Step

$$A=\int^2_1 x\ln xdx$$ Take $u=\ln x$ and $dv=x dx$ We then have $du=\frac{1}{x}dx$ and $v=\frac{x^2}{2}$ Apply the formula $\int^b_a udv= uv]^b_a-\int^b_a vdu$, we have $$A=\Big(\ln x\times\frac{x^2}{2}\Big)\Bigg]^2_1-\int^2_1\frac{x^2}{2}\times\frac{1}{x}dx$$ $$A=2\ln2-\frac{1}{2}\ln1-\int^2_1\frac{x}{2}dx$$ $$A=2\ln2-\Big(\frac{x^2}{4}\Big)\Bigg]^2_1$$ (since $\ln1=0$) $$A=2\ln2-\Big(1-\frac{1}{4}\Big)$$ $$A=2\ln2-\frac{3}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.