University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.1 - Integration by Parts - Exercises - Page 427: 20

Answer

$$\int t^2e^{4t}dt=\frac{e^{4t}}{32}(8t^2-4t+1)+C$$

Work Step by Step

$$A=\int t^2e^{4t}dt$$ Set $u=t^2$ and $dv=e^{4t}dt$ Then we have $du=2tdt$ and $v=\frac{1}{4}e^{4t}$ Using the formula $\int udv= uv-\int vdu$: $$A=\frac{t^2e^{4t}}{4}-\int\frac{1}{4}e^{4t}\times2tdt$$ $$A=\frac{t^2e^{4t}}{4}-\frac{1}{2}\int te^{4t}dt$$ Set $u=t$ and $dv=e^{4t}dt$ Then we have $du=dt$ and $v=\frac{1}{4}e^{4t}$ Using the formula $\int udv= uv-\int vdu$: $$A=\frac{t^2e^{4t}}{4}-\frac{1}{2}\Big(\frac{te^{4t}}{4}-\frac{1}{4}\int e^{4t}dt\Big)$$ $$A=\frac{t^2e^{4t}}{4}-\frac{te^{4t}}{8}+\frac{1}{8}\int e^{4t}+C$$ $$A=\frac{t^2e^{4t}}{4}-\frac{te^{4t}}{8}+\frac{e^{4t}}{32}+C$$ $$A=\frac{e^{4t}}{32}(8t^2-4t+1)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.