Answer
$\dfrac{5}{3}$
Work Step by Step
The area by using two integrals is given by:
$A=\int_{-(\pi/4)}^{0} \sec^2 t dt+\int_{0}^{1} (1-t^2)dt$
$\implies \int_{-(\pi/4)}^{0} \sec^2 t dt+\int_{0}^{1} (1-t^2)dt=[\tan t]_{-(\pi/4)}^{0}+[t-t^3]_{0}^{1}$
$\implies A=0-(-1)+(1-\dfrac{1}{3})$
$\implies A=1+\dfrac{2}{3}=\dfrac{5}{3}$