Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 287: 49

Answer

$\frac{1}{2}$

Work Step by Step

Step 1. Given the function $y=x^3-3x^2+2x=x(x-1)(x-2)$ and the interval $[0,2]$, find the zeros at $x=0,1,2$; thus we need to divide the integration into two regions: $[0,1],[1,2]$ Step 2. We have $A_1=\int_{0}^{1}(x^3-3x^2+2x)dx=(\frac{1}{4}x^4-x^3+x^2)|_{0}^{1}=(\frac{1}{4}(1)^4-(1)^3+(1)^2)-(\frac{1}{4}(0)^4-(0)^3+(0)^2)=\frac{1}{4}$ Step 3. Similarly, $A_2=\int_{1}^{2}(x^3-3x^2+2x)dx=(\frac{1}{4}x^4-x^3+x^2)|_{1}^{2}=(\frac{1}{4}(2)^4-(2)^3+(2)^2)-(\frac{1}{4}(1)^4-(1)^3+(1)^2)=-\frac{1}{4}$ Step 4. The total area is given by $A=|A_1|+|A_2|=\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.