Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 287: 45

Answer

$$\frac{{dy}}{{dx}} = 1$$

Work Step by Step

$$\eqalign{ & y = \int_0^{\sin x} {\frac{{dt}}{{\sqrt {1 - {t^2}} }}},\,\,\,\,\,\,\,\,\left| x \right| < \frac{\pi }{2} \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left( {\int_0^{\sin x} {\frac{{dt}}{{\sqrt {1 - {t^2}} }}} } \right) \cr & {\text{use the fundamental theorem of calculus part 1 with the chain rule }} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\sqrt {1 - {{\left( {\sin x} \right)}^2}} }}\frac{d}{{dx}}\left( {\sin x} \right) \cr & {\text{compute the derivative and simplify}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{\sqrt {1 - {{\sin }^2}x} }}\left( {\cos x} \right) \cr & \frac{{dy}}{{dx}} = \frac{1}{{\sqrt {{{\cos }^2}x} }}\left( {\cos x} \right) \cr & \frac{{dy}}{{dx}} = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.