Answer
$\frac{1}{2}(e^1-1)$
Work Step by Step
Given: $\int_{0}^{1}xe^{x^2}dx ->eqn 1$
Now ,we solve this by using substitution method
we take, $x^2=t$
differentiate $wrt . x$ on both sides
$=>2xdx=dt$
Now $eqn 1 $ becomes,
$\frac{1}{2}\int_{0}^{1}2xe^{x^2}dx=\frac{1}{2}\int_{0}^{1}e^tdt$
$=>\frac{1}{2}[e^t]_{0}^{1}$
$\frac{1}{2}(e^1-e^0)$
$\frac{1}{2}(e^1-1)$