Answer
$\dfrac{\ln^2 2}{2}$
Work Step by Step
Given:$\int_{1}^{2}\frac{\ln x}{x}dx$
Now,we take $\ln x=t$
Differentiate $wrt. x$ on both sides
We get,
$1/xdx=dt$
And limits from $ 0$ to $\ln 2 $
$\int_{0}^{\ln 2}tdt$
$[\frac{t^2}{2}]_{0}^{\ln 2}$
Now, apply the limits:
$\frac{(\ln 2)^2}{2}-0=\dfrac{\ln^2 2}{2}$