Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 287: 50

Answer

$\frac{83}{4}$

Work Step by Step

Step 1. Given the function $y=x^{1/3}-x=x^{1/3}(1-x^{2/3})$ and the interval $[-1,8]$, find the zeros at $x=0,1$; thus we need to divide the integration into three regions: $[-1,0],[0,1],[1,8]$ Step 2. We have $A_1=\int_{-1}^{0}(x^{1/3}-x)dx=(\frac{3}{4}x^{4/3}-\frac{1}{2}x^2)|_{-1}^{0}=(\frac{3}{4}(0)^{4/3}-\frac{1}{2}(0)^2)-(\frac{3}{4}(-1)^{4/3}-\frac{1}{2}(-1)^2)=-\frac{1}{4}$ Step 3. Similarly, $A_2=\int_{0}^{1}(x^{1/3}-x)dx=(\frac{3}{4}x^{4/3}-\frac{1}{2}x^2)|_{0}^{1}=(\frac{3}{4}(1)^{4/3}-\frac{1}{2}(1)^2)-(\frac{3}{4}(0)^{4/3}-\frac{1}{2}(0)^2)=\frac{1}{4}$ Step 4. For the third part, $A_3=\int_{1}^{8}(x^{1/3}-x)dx=(\frac{3}{4}x^{4/3}-\frac{1}{2}x^2)|_{1}^{8}=(\frac{3}{4}(8)^{4/3}-\frac{1}{2}(8)^2)-(\frac{3}{4}(1)^{4/3}-\frac{1}{2}(1)^2)=\frac{81}{4}$ Step 5. The total area is given by $A=|A_1|+|A_2+|A_3|=\frac{83}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.