Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 287: 46

Answer

$$\frac{{dy}}{{dx}} = - 1$$

Work Step by Step

$$\eqalign{ & y = \int_{\tan x}^0 {\frac{{dt}}{{1 + {t^2}}}} \cr & {\text{use the intergral property }}\cr &\int_a^b {f\left( x \right)} dx = - \int_b^a {f\left( x \right)} dx \cr & y = - \int_0^{\tan x} {\frac{{dt}}{{1 + {t^2}}}} \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = - \frac{d}{{dx}}\left( {\int_0^{\tan x} {\frac{{dt}}{{1 + {t^2}}}} } \right) \cr & {\text{use the fundamental theorem of calculus part 1 }}\cr &\frac{d}{{dx}}\left[ {\int_a^x {f\left( t \right)dt} } \right] = f\left( x \right) \cr & \frac{{dy}}{{dx}} = - \frac{1}{{1 + {{\left( {\tan x} \right)}^2}}}\frac{d}{{dx}}\left( {\tan x} \right) \cr & {\text{compute the derivative and simplify}} \cr & \frac{{dy}}{{dx}} = - \frac{1}{{1 + {{\tan }^2}x}}\left( {{{\sec }^2}x} \right) \cr & \frac{{dy}}{{dx}} = - \frac{1}{{{{\sec }^2}x}}\left( {{{\sec }^2}x} \right) \cr & \frac{{dy}}{{dx}} = - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.