Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 287: 43

Answer

$$\frac{{dy}}{{dx}} = 0$$

Work Step by Step

$$\eqalign{ & y = \int_{ - 1}^x {\frac{{{t^2}}}{{{t^2} + 4}}} dt - \int_3^x {\frac{{{t^2}}}{{{t^2} + 4}}} dt \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left( {\int_{ - 1}^x {\frac{{{t^2}}}{{{t^2} + 4}}} dt} \right) - \frac{d}{{dx}}\left( {\int_3^x {\frac{{{t^2}}}{{{t^2} + 4}}} dt} \right) \cr & {\text{use the fundamental theorem of calculus part}} 1 \cr &\frac{d}{{dx}}\left[ {\int_a^x {f\left( t \right)dt} } \right] = f\left( x \right) \cr & \frac{{dy}}{{dx}} = \frac{{{{\left( x \right)}^2}}}{{{{\left( x \right)}^2} + 4}} - \frac{{{{\left( x \right)}^2}}}{{{{\left( x \right)}^2} + 4}} \cr & {\text{Simplify}} \cr & \frac{{dy}}{{dx}} = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.