Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.4 - The Fundamental Theorem of Calculus - Exercises 5.4 - Page 287: 48

Answer

$12$

Work Step by Step

Step 1. Given the function $y=3x^2-3=3(x+1)(x-1)$ and the interval $[-2,2]$, find the zeros at $x=-1,1$; thus we need to divide the integration into three regions: $[-2,-1],[-1,1],[1,2]$ Step 2. We have $A_1=\int_{-2}^{-1}(3x^2-3)dx=(x^3-3x)|_{-2}^{-1}=((-1)^3-3(-1))-((-2)^3-3(-2))=4$ Step 3. Similarly, $A_2=\int_{-1}^{1}(3x^2-3)dx=(x^3-3x)|_{-1}^{1}=((1)^3-3(1))-((-1)^3-3(-1))=-4$ Step 4. For the third part, $A_3=\int_{1}^{2}(3x^2-3)dx=(x^3-3x)|_{1}^{2}=((2)^3-3(2))-((1)^3-3(1))=4$ Step 5. The total area is given by $A=|A_1|+|A_2+|A_3|=12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.