Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.3 - Partial Derivatives - Exercises 14.3 - Page 807: 50

Answer

$\frac{\partial^{2} w}{\partial x^{2}}$ = $\frac{2x^{3}+2y^{2}-6xy-6x^{2}y}{(x^{2}+y)^{3}}$ $\frac{\partial^{2} w}{\partial y^{2}}$ = $\frac{2x^{2}+2x}{(x^{2}+y)^{3}}$ $\frac{\partial^{2} w}{\partial x{\partial y}}$ = $\frac{2x^{3}+3x^{2}-y-2xy}{(x^{2}+y)^{3}}$

Work Step by Step

$\frac{\partial w}{\partial x}$ = $\frac{(x^{2}+y)(1)-(x-y)(2x)}{(x^{2}+y)^{2}}$ = $\frac{-x^{2}+y+2xy}{(x^{2}+y)^{2}}$ $\frac{\partial^{2} w}{\partial x^{2}}$ = $\frac{(x^{2}+y)^{2}(-2x+2y)-(-x^{2}+y+2xy)(2)(x^{2}+y)(2x)}{(x^{2}+y)^{4}}$ = $\frac{(x^{2}+y)(2x^{3}+2y^{2}-6xy-6x^{2}y)}{(x^{2}+y)^{4}}$ = $\frac{2x^{3}+2y^{2}-6xy-6x^{2}y}{(x^{2}+y)^{3}}$ $\frac{\partial w}{\partial y}$ = $\frac{(x^{2}+y)(-1)-(x-y)(1)}{(x^{2}+y)^{2}}$ = $\frac{-x^{2}-x}{(x^{2}+y)^{2}}$ $\frac{\partial^{2} w}{\partial y^{2}}$ = $\frac{-(-x^{2}-x)(2)(x^{2}+y)(1)}{(x^{2}+y)^{4}}$ = $\frac{2x^{2}+2x}{(x^{2}+y)^{3}}$ $\frac{\partial^{2} w}{\partial x{\partial y}}$ = $\frac{(x^{2}+y)^{2}(1+2x)-(-x^{2}+y+2xy)(2)(x^{2}+y)(1)}{(x^{2}+y)^{4}}$ = $\frac{(x^{2}+y)(2x^{3}+2xy+x^{2}+y+2x^{2}-2y-4xy)}{(x^{2}+y)^{4}}$ = $\frac{2x^{3}+3x^{2}-y-2xy}{(x^{2}+y)^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.