Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.3 - Partial Derivatives - Exercises 14.3 - Page 807: 46

Answer

$\frac{\partial^{2} s}{\partial x^{2}}$ = $\frac{2xy}{(x^{2}+y^{2})^{2}}$ $\frac{\partial^{2} s}{\partial x{\partial y}}$ = $\frac{-x^{2}+y^{2}}{(x^{2}+y^{2})^{2}}$ $\frac{\partial^{2} s}{\partial y^{2}}$ = $\frac{-2xy}{(x^{2}+y^{2})^{2}}$

Work Step by Step

$\frac{\partial s}{\partial x}$ = $\frac{1}{1+(\frac{y}{x})^{2}}$$[\frac{-y}{x^{2}}]$ = $\frac{x^{2}}{x^{2}+y^{2}}$$[\frac{-y}{x^{2}}]$ = $\frac{-y}{x^{2}+y^{2}}$ $\frac{\partial^{2} s}{\partial x^{2}}$ = $\frac{-(-y)(2x)}{(x^{2}+y^{2})^{2}}$ = $\frac{2xy}{(x^{2}+y^{2})^{2}}$ $\frac{\partial^{2} s}{\partial x{\partial y}}$ = $\frac{(x^{2}+y^{2})(-1)-(-y)(2y)}{(x^{2}+y^{2})^{2}}$ = $\frac{-x^{2}-y^{2}+2y^{2}}{(x^{2}+y^{2})^{2}}$ = $\frac{-x^{2}+y^{2}}{(x^{2}+y^{2})^{2}}$ $\frac{\partial s}{\partial y}$ = $\frac{1}{1+(\frac{y}{x})^{2}}$$[\frac{x}{x^{2}}]$ = $\frac{x^{2}}{x^{2}+y^{2}}$$[\frac{1}{x}]$ = $\frac{x}{x^{2}+y^{2}}$ $\frac{\partial^{2} s}{\partial y^{2}}$ = $\frac{(-x)(2y)}{(x^{2}+y^{2})^{2}}$ = $\frac{-2xy}{(x^{2}+y^{2})^{2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.