Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.3 - Partial Derivatives - Exercises 14.3 - Page 807: 47

Answer

$\frac{\partial^{2} w}{\partial x^{2}}$ = $2x^{2}y^{2}[sec^{2}(xy)tan(xy)]+4xy[sec^{2}(xy)]+2tan(xy)$ $\frac{\partial^{2} w}{\partial y^{2}}$ = $2x^{4}[sec^{2}(xy)tan(xy)]$ $\frac{\partial^{2} w}{\partial x {\partial y}}$ = $2x^{3}y[sec^{2}(xy)tan(xy)]+3x^{2}[sec^{2}(xy)]$

Work Step by Step

$\frac{\partial w}{\partial x}$ = $x^{2}sec^{2}(xy)[y]+tan(xy)[2x]$ = $x^{2}y[sec^{2}(xy)]+2x[tan(xy)]$ $\frac{\partial^{2} w}{\partial x^{2}}$ = $x^{2}y(2)[sec^{2}(xy)tan(xy)][y]+[sec^{2}(xy)](2xy)+(2x)sec^{2}(xy)[y]+2tan(xy)$ = $2x^{2}y^{2}[sec^{2}(xy)tan(xy)]+4xy[sec^{2}(xy)]+2tan(xy)$ $\frac{\partial w}{\partial y}$ = $x^{2}sec^{2}(xy)[x]$ = $x^{3}[sec^{2}(xy)]$ $\frac{\partial^{2} w}{\partial y^{2}}$ = $x^{3}[2sec^{2}(xy)tan(xy)][x]$ = $2x^{4}[sec^{2}(xy)tan(xy)]$ $\frac{\partial^{2} w}{\partial x {\partial y}}$ = $x^{2}y(2)[sec^{2}(xy)tan(xy)][x]+[sec^{2}(xy)](x^{2})+(2x)sec^{2}(xy)[x]$ = $2x^{3}y[sec^{2}(xy)tan(xy)]+3x^{2}[sec^{2}(xy)]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.