Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 50

Answer

the curve: $$ r=\cos^{2}( \frac{\theta }{2}) $$ is completely traced with $$ \theta =0 \quad \text {to} \quad \theta=2 \pi $$ the exact length of the given curve is equal to $$ \begin{aligned} L &=\int_{0}^{2 \pi} \sqrt{\cos ^{2}(\theta / 2)} d \theta=\\ &=\int_{0}^{2 \pi}|\cos (\theta / 2)| d \theta \\ &=4 \end{aligned} $$

Work Step by Step

The curve: $$ r=\cos^{2}( \frac{\theta }{2}) $$ is completely traced with $$ \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} r^{2}+(d r / d \theta)^{2} &=\left[\cos ^{2}(\theta / 2)\right]^{2}+\left[2 \cos (\theta / 2) \cdot(-\sin (\theta / 2)) \cdot \frac{1}{2}\right]^{2} \\ &=\cos ^{4}(\theta / 2)+\cos ^{2}(\theta / 2) \sin ^{2}(\theta / 2) \\ &=\cos ^{2}(\theta / 2)\left[\cos ^{2}(\theta / 2)+\sin ^{2}(\theta / 2)\right] \\ &=\cos ^{2}(\theta / 2) \end{aligned} $$ then the exact length of the given curve is equal to $$ \begin{aligned} L &=\int_{0}^{2 \pi} \sqrt{\cos ^{2}(\theta / 2)} d \theta=\\ &=\int_{0}^{2 \pi}|\cos (\theta / 2)| d \theta \\ &\quad\quad\quad[\text { since } \cos (\theta / 2) \geq 0 \text { for } 0 \leq \theta \leq \pi] \\ &=2 \int_{0}^{\pi} \cos (\theta / 2) d \theta \\ &\quad \quad\quad \left[u=\frac{1}{2} \theta\right] \\ &=4 \int_{0}^{\pi / 2} \cos u d u \\ &=4[\sin u]_{0}^{\pi / 2}\\ &=4(1-0)\\ &=4 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.