Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 24

Answer

$=2+\frac{\pi}{4}$

Work Step by Step

$r_{1}=1-sin\theta$ and $r_{2}=1$ $r_{1}^{2}-r_{2}^{2}=(1-sin\theta)^{2}-1=\frac{1}{2}-\frac{1}{2}cos(2\theta)-2sin\theta$ $A=2.\frac{1}{2}\int_{\pi}^{2\pi}(\frac{1}{2}-\frac{1}{2}cos(2\theta)-2sin\theta)d \theta$ $=\frac{1}{2}[\frac{1}{2}\theta-\frac{1}{2}.\frac{1}{2}sin(2\theta)+2cos\theta]_{\pi}^{2\pi}$ $=2+\frac{\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.