Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 13

Answer

The area that the curve encloses $$ r=2+ \cos 4 \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ A =\int_{0}^{2\pi} \frac{1}{2} r^{2} d \theta =\frac{9}{2} \pi $$

Work Step by Step

The area that the curve encloses $$ r=2+ \cos 4 \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} A &=\int_{0}^{2\pi} \frac{1}{2} r^{2} d \theta \\ &=\int_{0}^{2 \pi} \frac{1}{2}(2+\sin 4 \theta)^{2} d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}\left(4+4 \sin 4 \theta+\sin ^{2} 4 \theta\right) d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}\left[4+4 \sin 4 \theta+\frac{1}{2}(1-\cos 8 \theta)\right] d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}\left(\frac{9}{2}+4 \sin 4 \theta-\frac{1}{2} \cos 8 \theta\right) d \theta \\ &=\frac{1}{2}\left[\frac{9}{2} \theta-\cos 4 \theta-\frac{1}{16} \sin 8 \theta\right]_{0}^{2 \pi} \\ &=\frac{1}{2}[(9 \pi-1)-(-1)]=\frac{9}{2} \pi \\ &=\frac{1}{2}(9\pi)\\ &=\frac{9}{2} \pi \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.