Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 46

Answer

The exact length of the polar curve: $$ r=5^{\theta} \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ &=\frac{\sqrt{1+(\ln 5)^{2}}}{\ln 5}\left(5^{2 \pi}-1\right) \end{aligned} $$

Work Step by Step

The exact length of the polar curve: $$ r=5^{\theta} \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ & =\int_{0}^{2 \pi} \sqrt{\left(5^{\theta}\right)^{2}+\left(5^{\theta} \ln 5\right)^{2}} d \theta \\ & =\int_{0}^{2 \pi} \sqrt{5^{2 \theta}\left[1+(\ln 5)^{2}\right]} d \theta \\ &=\sqrt{1+(\ln 5)^{2}} \int_{0}^{2 \pi} \sqrt{5^{2 \theta}} d \theta \\ &=\sqrt{1+(\ln 5)^{2}} \int_{0}^{2 \pi} 5^{\theta} d \theta \\ & =\sqrt{1+(\ln 5)^{2}}\left[\frac{5^{\theta}}{\ln 5}\right]_{0}^{2 \pi} \\ &=\sqrt{1+(\ln 5)^{2}}\left(\frac{5^{2 \pi}}{\ln 5}-\frac{1}{\ln 5}\right) \\ &=\frac{\sqrt{1+(\ln 5)^{2}}}{\ln 5}\left(5^{2 \pi}-1\right) \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.