Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 48

Answer

The exact length of the polar curve: $$ r=2(1+\cos \theta) \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ & =\int_{0}^{2 \pi} \sqrt{[2(1+\cos \theta)]^{2}+(-2 \sin \theta)^{2}} d \theta\\ &=16 \end{aligned} $$

Work Step by Step

The exact length of the polar curve: $$ r=2(1+\cos \theta) \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ & =\int_{0}^{2 \pi} \sqrt{[2(1+\cos \theta)]^{2}+(-2 \sin \theta)^{2}} d \theta \\ & =\int_{0}^{2 \pi} \sqrt{4+8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta \\ &=\int_{0}^{2 \pi} \sqrt{8+8 \cos \theta} d \theta \\ &=\sqrt{8} \int_{0}^{2 \pi} \sqrt{1+\cos \theta} d \theta \\ & =\sqrt{8} \int_{0}^{2 \pi} \sqrt{2 \cdot \frac{1}{2}(1+\cos \theta)} d \theta \\ &=\sqrt{8} \int_{0}^{2 \pi} \sqrt{2 \cos ^{2} \frac{\theta}{2}} d \theta \\ & =\sqrt{8} \sqrt{2} \int_{0}^{2 \pi}\left|\cos \frac{\theta}{2}\right| d \theta \\& = 4 \cdot 2 \int_{0}^{\pi} \cos \frac{\theta}{2} d \theta \quad \text { [by symmetry] } \\ =& 8\left[2 \sin \frac{\theta}{2}\right]_{0}^{\pi} \\ & = 8(2)\\ &=16 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.