Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 45

Answer

The exact length of the polar curve: $$ r=2 \cos \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta= \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ &=2 \pi \end{aligned} $$

Work Step by Step

The exact length of the polar curve: $$ r=2 \cos \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta= \pi $$ is equal to $$ \begin{aligned} L &=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta \\ &=\int_{0}^{\pi} \sqrt{(2 \cos \theta)^{2}+(-2 \sin \theta)^{2}} d \theta \\ &=\int_{0}^{\pi} \sqrt{4\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} d \theta \\ &=\int_{0}^{\pi} \sqrt{4} d \theta \\ &=[2 \theta]_{0}^{\pi} \\ &=2 \pi \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.