Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 31

Answer

$\frac{\pi}{2}-1$

Work Step by Step

$A=\frac{1}{2}\int_{0}^{\pi/8}(sin2\theta)^{2}d \theta+\frac{1}{2}\int_{\pi/8}^{\pi/4}(cos2\theta)^{2}d \theta$ $=2.\frac{1}{2}\int_{0}^{\pi/2}(sin2\theta)^{2}d \theta$ $=\frac{1}{2}[\theta-\frac{1}{4}sin4\theta]_{0}^{\pi/8}$ $=\frac{\pi}{16}-\frac{1}{8}$ Therefore the area of the region is, $A=8(\frac{\pi}{16}-\frac{1}{8})=\frac{\pi}{2}-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.