Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 35

Answer

$\frac{\pi+3\sqrt 3}{4}$

Work Step by Step

$A=\int(\frac{1}{2}+cos\theta)^{2}d \theta$ $=\int(\frac{1}{4}+cos\theta+cos^{2}\theta)d \theta$ $=\frac{3}{4}\theta+sin\theta+\frac{1}{4}sin2\theta$ Now, put the limits in, subtracting the small loop from the big one $=[\frac{3}{4}\theta+sin\theta+\frac{1}{4}sin2\theta]_{0}^{2\pi/3}-[\frac{3}{4}\theta+sin\theta+\frac{1}{4}sin2\theta]_{2\pi/3}^{\pi}$ $=\frac{\pi+3\sqrt 3}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.