Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 10

Answer

The area that encloses: $$ r=1- \sin \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to: $$ A =\int_{0}^{2\pi} \frac{1}{2} r^{2} d \theta =\frac{3 \pi}{2} $$

Work Step by Step

The area that encloses: $$ r=1- \sin \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} A &=\int_{0}^{2\pi} \frac{1}{2} r^{2} d \theta \\ &=\frac{1}{2} \int_{0}^{2\pi}(1- \sin \theta)^{2} d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}\left(1-2 \sin \theta+\sin ^{2} \theta\right) d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}\left[1-2 \sin \theta+\frac{1}{2}(1-\cos 2 \theta)\right] d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}\left(\frac{3}{2}-2 \sin \theta-\frac{1}{2} \cos 2 \theta\right) d \theta\\ &=\frac{1}{2}\left[\frac{3}{2} \theta+2 \cos \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}\\ &=\frac{1}{2}[(3 \pi+2)-(2)]\\ &=\frac{3 \pi}{2} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.