Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Areas and Lengths in Polar Coordinates - 10.4 Exercises - Page 673: 11

Answer

The area that encloses $$ r=3+2 \cos \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ A =\int_{0}^{2\pi} \frac{1}{2} r^{2} d \theta =11 \pi $$

Work Step by Step

The area that encloses $$ r=3+2 \cos \theta \quad \text {for } \theta =0 \quad \text {to} \quad \theta=2 \pi $$ is equal to $$ \begin{aligned} A &=\int_{0}^{2\pi} \frac{1}{2} r^{2} d \theta \\ &=\int_{0}^{2 \pi} \frac{1}{2}(3+2 \cos \theta)^{2} d \theta\\ &=\frac{1}{2} \int_{0}^{2 \pi}\left(9+12 \cos \theta+4 \cos ^{2} \theta\right) d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}\left[9+12 \cos \theta+4 \cdot \frac{1}{2}(1+\cos 2 \theta)\right] d \theta \\ &=\frac{1}{2} \int_{0}^{2 \pi}(11+12 \cos \theta+2 \cos 2 \theta) d \theta \\ &= \frac{1}{2}[11 \theta+12 \sin \theta+\sin 2 \theta]_{0}^{2 \pi} \\ &=\frac{1}{2}(22 \pi)\\ &=11 \pi \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.