Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 91

Answer

$$\frac{{dy}}{{dx}} = {x^{9 + {x^{10}}}} + 10{x^{9 + {x^{10}}}}\ln x$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left( {{x^{\left( {{x^{10}}} \right)}}} \right) \cr & {\text{let }}y = {x^{\left( {{x^{10}}} \right)}} \cr & {\text{taking the natural logarithm of both sides of the equation}} \cr & \,\,\,\ln y = \ln {x^{\left( {{x^{10}}} \right)}} \cr & {\text{using logarithmic properties}} \cr & \,\,\,\ln y = {x^{10}}\ln x \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{d}{{dx}}\left[ {{x^{10}}\ln x} \right] \cr & {\text{product rule}} \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = {x^{10}}\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {{x^{10}}} \right] \cr & {\text{compute derivatives}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = {x^{10}}\left( {\frac{1}{x}} \right) + \ln x\left( {10{x^9}} \right) \cr & \frac{1}{y}\frac{{dy}}{{dx}} = {x^9} + 10{x^9}\ln x \cr & {\text{solving for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = y\left( {{x^9} + 10{x^9}\ln x} \right) \cr & {\text{replace }}y{\text{ with }}{x^{\left( {{x^{10}}} \right)}} \cr & \frac{{dy}}{{dx}} = {x^{\left( {{x^{10}}} \right)}}\left( {{x^9} + 10{x^9}\ln x} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dx}} = {x^{9 + {x^{10}}}} + 10{x^{9 + {x^{10}}}}\ln x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.