Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 71

Answer

$$\frac{{{d^2}\left( {{{\log }_{10}}x} \right)}}{{d{x^2}}} = - \frac{1}{{{x^2}\left( {\ln 10} \right)}}$$

Work Step by Step

$$\eqalign{ & {\text{let }}y = {\log _{10}}x \cr & {\text{find }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{{\log }_{10}}x} \right] \cr & {\text{using the rule }}\frac{d}{{dx}}\left[ {{{\log }_a}x} \right] = \frac{1}{{u\ln a}} \cr & \frac{{dy}}{{dx}} = \frac{1}{{x\ln 10}} \cr & \cr & {\text{find }}\frac{{{d^2}y}}{{d{x^2}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {\frac{{dy}}{{dx}}} \right] \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {\frac{1}{{x\ln 10}}} \right] \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{1}{{\ln 10}}\frac{d}{{dx}}\left[ {\frac{1}{x}} \right] \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{1}{{\ln 10}}\left( { - \frac{1}{{{x^2}}}} \right) \cr & \frac{{{d^2}y}}{{d{x^2}}} = - \frac{1}{{{x^2}\left( {\ln 10} \right)}} \cr & {\text{where }}y = {\log _{10}}x \cr & \frac{{{d^2}\left( {{{\log }_{10}}x} \right)}}{{d{x^2}}} = - \frac{1}{{{x^2}\left( {\ln 10} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.