Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 83

Answer

$$y = 2$$

Work Step by Step

$$\eqalign{ & {\text{function }}y = {2^{\sin x}}{\text{ at }}x = \pi /2 \cr & {\text{evaluating }}y\left( {\pi /2} \right) \cr & \,\,\,y\left( {\pi /2} \right) = {2^{\sin \left( {\pi /2} \right)}} \cr & \,\,\,y\left( {\pi /2} \right) = {2^1} \cr & \,\,\,y\left( {\pi /2} \right) = 2 \cr & {\text{we have the point }}\left( {\pi /2,2} \right) \cr & \cr & {\text{find the slope at }}x = \pi /2 \cr & \,\,\frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{2^{\sin x}}} \right] \cr & \,\,\frac{{dy}}{{dx}} = {2^{\sin x}}\left( {\ln 2} \right)\frac{d}{{dx}}\left[ {\sin x} \right] \cr & \,\,\frac{{dy}}{{dx}} = {2^{\sin x}}\left( {\ln 2} \right)\cos x \cr & \,\,m = {\left. {\frac{{dy}}{{dx}}} \right|_{x = \pi /2}} = {2^{\sin \left( {\pi /2} \right)}}\left( {\ln 2} \right)\cos \left( {\pi /2} \right) \cr & \,\,m = {2^{\left( 1 \right)}}\left( {\ln 2} \right)\left( 0 \right) \cr & \,\,m = 0 \cr & {\text{find the equation of the tangent line at the point }}\left( {\pi /2,2} \right) \cr & \,\,\,\,\,y - {y_1} = m\left( {x - {x_1}} \right) \cr & \,\,\,\,\,y - 2 = 0\left( {x - \pi /2} \right) \cr & \,\,\,\,\,y - 2 = 0 \cr & \,\,\,\,\,y = 2 \cr & \cr & {\text{graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.