Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 90

Answer

$$\frac{{dy}}{{dx}} = {\left( {1 + {x^2}} \right)^{\sin x}}\left[ {\frac{{2x\sin x}}{{1 + {x^2}}} - \ln \left( {1 + {x^2}} \right)\left( {\cos x} \right)} \right]$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}{\left( {1 + {x^2}} \right)^{\sin x}} \cr & {\text{let }}y = {\left( {1 + {x^2}} \right)^{\sin x}} \cr & {\text{taking the natural logarithm of both sides of the equation}} \cr & \,\,\,\ln y = \ln {\left( {1 + {x^2}} \right)^{\sin x}} \cr & {\text{using logarithmic properties}} \cr & \,\,\,\ln y = \sin x\ln \left( {1 + {x^2}} \right) \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{d}{{dx}}\left[ {\sin x\ln \left( {1 + {x^2}} \right)} \right] \cr & {\text{product rule}} \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \sin x\frac{d}{{dx}}\left[ {\ln \left( {1 + {x^2}} \right)} \right] - \ln \left( {1 + {x^2}} \right)\frac{d}{{dx}}\left[ {\sin x} \right] \cr & {\text{compute derivatives}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \sin x\left( {\frac{{2x}}{{1 + {x^2}}}} \right) - \ln \left( {1 + {x^2}} \right)\left( {\cos x} \right) \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \frac{{2x\sin x}}{{1 + {x^2}}} - \ln \left( {1 + {x^2}} \right)\left( {\cos x} \right) \cr & {\text{solving for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = y\left[ {\frac{{2x\sin x}}{{1 + {x^2}}} - \ln \left( {1 + {x^2}} \right)\left( {\cos x} \right)} \right] \cr & {\text{replace }}y{\text{ with }}{\left( {1 + {x^2}} \right)^{\sin x}} \cr & \frac{{dy}}{{dx}} = {\left( {1 + {x^2}} \right)^{\sin x}}\left[ {\frac{{2x\sin x}}{{1 + {x^2}}} - \ln \left( {1 + {x^2}} \right)\left( {\cos x} \right)} \right] \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.