Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 64

Answer

$$f'\left( x \right) = \frac{{{{\tan }^{10}}x}}{{{{\left( {5x + 3} \right)}^6}}}\left( {\frac{{10}}{{\sin x\cos x}} - \frac{{30}}{{5x + 3}}} \right)$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{{{\tan }^{10}}x}}{{{{\left( {5x + 3} \right)}^6}}} \cr & {\text{taking the natural logarithm of both sides of the equation}} \cr & \ln \left( {f\left( x \right)} \right) = \ln \left( {\frac{{{{\tan }^{10}}x}}{{{{\left( {5x + 3} \right)}^6}}}} \right) \cr & {\text{quotient rule for logarithms}} \cr & \ln \left( {f\left( x \right)} \right) = \ln \left( {{{\tan }^{10}}x} \right) - \ln \left( {{{\left( {5x + 3} \right)}^6}} \right) \cr & {\text{power property for logarithms}} \cr & \ln \left( {f\left( x \right)} \right) = 10\ln \left( {\tan x} \right) - 6\ln \left( {5x + 3} \right) \cr & {\text{trigonometric identity for }}\tan x \cr & \ln \left( {f\left( x \right)} \right) = 10\ln \left( {\frac{{\sin x}}{{\cos x}}} \right) - 6\ln \left( {5x + 3} \right) \cr & \ln \left( {f\left( x \right)} \right) = 10\ln \left( {\sin x} \right) - 10\ln \left( {\cos x} \right) - 6\ln \left( {5x + 3} \right) \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{{f'\left( x \right)}}{{f\left( x \right)}} = 10\left( {\frac{{\cos x}}{{\sin x}}} \right) - 10\left( {\frac{{ - \sin x}}{{\cos x}}} \right) - 6\left( {\frac{5}{{5x + 3}}} \right) \cr & {\text{simplifying}} \cr & \frac{{f'\left( x \right)}}{{f\left( x \right)}} = \frac{{10\cos x}}{{\sin x}} + \frac{{10\sin x}}{{\cos x}} - \frac{{30}}{{5x + 3}} \cr & {\text{solving for }}f'\left( x \right) \cr & f'\left( x \right) = f\left( x \right)\left( {\frac{{10{{\cos }^2}x + 10{{\sin }^2}x}}{{\sin x\cos x}} - \frac{{30}}{{5x + 3}}} \right) \cr & f'\left( x \right) = f\left( x \right)\left( {\frac{{10}}{{\sin x\cos x}} - \frac{{30}}{{5x + 3}}} \right) \cr & {\text{replace }}f\left( x \right){\text{ with the original function:}} \cr & f'\left( x \right) = \frac{{{{\tan }^{10}}x}}{{{{\left( {5x + 3} \right)}^6}}}\left( {\frac{{10}}{{\sin x\cos x}} - \frac{{30}}{{5x + 3}}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.