Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 79

Answer

$$f'\left( x \right) = \frac{1}{{2x}}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \ln \sqrt {10x} \cr & {\text{rewriting the radical by the property }}\sqrt u = {u^{1/2}} \cr & f\left( x \right) = \ln {\left( {10x} \right)^{1/2}} \cr & {\text{use the power property for logarithms}} \cr & f\left( x \right) = \frac{1}{2}\ln \left( {10x} \right) \cr & {\text{use the product property for logarithms}} \cr & f\left( x \right) = \frac{1}{2}\left[ {\ln 10 + \ln x} \right] \cr & f\left( x \right) = \frac{1}{2}\ln 10 + \frac{1}{2}\ln x \cr & {\text{differentiate both sides}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{2}\ln 10} \right] + \frac{d}{{dx}}\left[ {\frac{1}{2}\ln x} \right] \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{2}\ln 10} \right] + \frac{1}{2}\frac{d}{{dx}}\left[ {\ln x} \right] \cr & f'\left( x \right) = 0 + \frac{1}{2}\left( {\frac{1}{x}} \right) \cr & f'\left( x \right) = \frac{1}{{2x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.