Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 73

Answer

$$\frac{{{d^3}y}}{{d{x^3}}} = \frac{2}{x}$$

Work Step by Step

$$\eqalign{ & {\text{let }}y = {x^2}\ln x \cr & {\text{find }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{x^2}\ln x} \right] \cr & {\text{using the product rule }} \cr & \frac{{dy}}{{dx}} = {x^2}\frac{d}{{dx}}\left[ {\ln x} \right] + \ln x\frac{d}{{dx}}\left[ {{x^2}} \right] \cr & \frac{{dy}}{{dx}} = {x^2}\left( {\frac{1}{x}} \right) + \ln x\left( {2x} \right) \cr & \frac{{dy}}{{dx}} = x + 2x\ln x \cr & \cr & {\text{find }}\frac{{{d^2}y}}{{d{x^2}}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {\frac{{dy}}{{dx}}} \right] \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ {x + 2x\ln x} \right] \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ x \right] + \frac{d}{{dx}}\left[ {2x\ln x} \right] \cr & {\text{product rule}} \cr & \frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left[ x \right] + 2x\frac{d}{{dx}}\left[ {\ln x} \right] + 2\ln x\frac{d}{{dx}}\left[ x \right] \cr & \frac{{{d^2}y}}{{d{x^2}}} = 1 + 2x\left( {\frac{1}{x}} \right) + 2\ln x\left( 1 \right) \cr & \frac{{{d^2}y}}{{d{x^2}}} = 1 + 2 + 2\ln x \cr & \frac{{{d^2}y}}{{d{x^2}}} = 3 + 2\ln x \cr & \cr & {\text{find }}\frac{{{d^3}y}}{{d{x^3}}} \cr & \frac{{{d^3}y}}{{d{x^3}}} = \frac{d}{{dx}}\left[ {\frac{{{d^2}y}}{{d{x^2}}}} \right] \cr & \frac{{{d^3}y}}{{d{x^3}}} = \frac{d}{{dx}}\left[ {3 + 2\ln x} \right] \cr & \frac{{{d^3}y}}{{d{x^3}}} = \frac{d}{{dx}}\left[ 3 \right] + \frac{d}{{dx}}\left[ {2\ln x} \right] \cr & \frac{{{d^3}y}}{{d{x^3}}} = 1 + 2\left( {\frac{1}{x}} \right) \cr & \frac{{{d^3}y}}{{d{x^3}}} = \frac{2}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.