Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 74

Answer

$$\frac{{dy}}{{dx}} = 2{x^2}{\left( {{x^2} + 1} \right)^{x - 1}} + {\left( {{x^2} + 1} \right)^x}\ln \left( {{x^2} + 1} \right)$$

Work Step by Step

$$\eqalign{ & y = {\left( {{x^2} + 1} \right)^x} \cr & \left( i \right){\text{Using the fact that }}{b^x} = {e^{x\ln b}},{\text{ then}} \cr & y = {e^{x\ln \left( {{x^2} + 1} \right)}} \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = {e^{x\ln \left( {{x^2} + 1} \right)}}\frac{d}{{dx}}\left[ {x\ln \left( {{x^2} + 1} \right)} \right] \cr & \frac{{dy}}{{dx}} = {e^{x\ln \left( {{x^2} + 1} \right)}}\left[ {x\left( {\frac{{2x}}{{{x^2} + 1}}} \right) + \ln \left( {{x^2} + 1} \right)} \right] \cr & \frac{{dy}}{{dx}} = {e^{x\ln \left( {{x^2} + 1} \right)}}\left[ {\frac{{2{x^2}}}{{{x^2} + 1}} + \ln \left( {{x^2} + 1} \right)} \right] \cr & {\text{Substitute }}{\left( {{x^2} + 1} \right)^x}{\text{ for }}{e^{x\ln \left( {{x^2} + 1} \right)}} \cr & \frac{{dy}}{{dx}} = {\left( {{x^2} + 1} \right)^x}\left[ {\frac{{2{x^2}}}{{{x^2} + 1}} + \ln \left( {{x^2} + 1} \right)} \right] \cr & {\text{Simplifying}} \cr & \frac{{dy}}{{dx}} = 2{x^2}{\left( {{x^2} + 1} \right)^{x - 1}} + {\left( {{x^2} + 1} \right)^x}\ln \left( {{x^2} + 1} \right) \cr & \cr & \left( {ii} \right){\text{Using the logarithmic differentiation}} \cr & \ln y = \ln {\left( {{x^2} + 1} \right)^x} \cr & \ln y = x\ln \left( {{x^2} + 1} \right) \cr & {\text{Differentiate both sides}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = x\left( {\frac{{2x}}{{{x^2} + 1}}} \right) + \ln \left( {{x^2} + 1} \right) \cr & \frac{1}{y}\frac{{dy}}{{dx}} = \frac{{2{x^2}}}{{{x^2} + 1}} + \ln \left( {{x^2} + 1} \right) \cr & {\text{Solving for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = y\frac{{2{x^2}}}{{{x^2} + 1}} + y\ln \left( {{x^2} + 1} \right) \cr & {\text{Where }}y = {\left( {{x^2} + 1} \right)^x} \cr & \frac{{dy}}{{dx}} = {\left( {{x^2} + 1} \right)^x}\frac{{2{x^2}}}{{{x^2} + 1}} + {\left( {{x^2} + 1} \right)^x}\ln \left( {{x^2} + 1} \right) \cr & \frac{{dy}}{{dx}} = 2{x^2}{\left( {{x^2} + 1} \right)^{x - 1}} + {\left( {{x^2} + 1} \right)^x}\ln \left( {{x^2} + 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.