Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 82

Answer

$$f'\left( x \right) = 4\tan x + 2\ln \left( {\sec x\csc x} \right)$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \ln \left( {{{\sec }^4}x{{\tan }^2}x} \right) \cr & {\text{Using the logarithmic properties}} \cr & f\left( x \right) = \ln \left( {{{\sec }^4}x} \right) + \ln \left( {{{\tan }^2}x} \right) \cr & f\left( x \right) = 4\ln \left( {\sec x} \right) + 2\ln \left( {\tan x} \right) \cr & {\text{Differentiate both sides with respect to }}x \cr & f'\left( x \right) = 4\left( {\frac{{\sec x\tan x}}{{\sec x}}} \right) + 2\ln \left( {\frac{{{{\sec }^2}x}}{{\tan x}}} \right) \cr & f'\left( x \right) = 4\tan x + 2\ln \left( {\frac{1}{{{{\cos }^2}x}}\frac{{\cos x}}{{\sin x}}} \right) \cr & f'\left( x \right) = 4\tan x + 2\ln \left( {\frac{1}{{\cos x}}\frac{1}{{\sin x}}} \right) \cr & f'\left( x \right) = 4\tan x + 2\ln \left( {\sec x\csc x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.