Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 88

Answer

$$\frac{d}{{dx}}\left( {{x^\pi } + {\pi ^x}} \right) = \pi {x^{\pi - 1}} + {\pi ^x}\ln \pi $$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left( {{x^\pi } + {\pi ^x}} \right) \cr & {\text{sum rule for differentiation}} \cr & \frac{d}{{dx}}\left( {{x^\pi } + {\pi ^x}} \right) = \frac{d}{{dx}}\left( {{x^\pi }} \right) + \frac{d}{{dx}}\left( {{\pi ^x}} \right) \cr & {\text{compute derivatives}} \cr & \frac{d}{{dx}}\left( {{x^\pi } + {\pi ^x}} \right) = \pi {x^{\pi - 1}} + {\pi ^x}\left( {\ln \pi } \right)\left( 1 \right) \cr & {\text{simplifying}} \cr & \frac{d}{{dx}}\left( {{x^\pi } + {\pi ^x}} \right) = \pi {x^{\pi - 1}} + {\pi ^x}\ln \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.