Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 212: 72

Answer

$$\frac{{{d^n}}}{{d{x^n}}}\left( {{2^x}} \right) = {2^x}{\left( {\ln 2} \right)^n}$$

Work Step by Step

$$\eqalign{ & \frac{{{d^n}}}{{d{x^n}}}\left( {{2^x}} \right) \cr & {\text{Calculating until the third derivative}} \cr & \frac{d}{{dx}}\left( {{2^x}} \right) = {2^x}\ln 2 \cr & \frac{{{d^2}}}{{d{x^2}}}\left( {{2^x}\ln 2} \right) = \ln 2\left( {{2^x}\ln 2} \right) = {2^x}{\left( {\ln 2} \right)^2} \cr & \frac{{{d^3}}}{{d{x^3}}}\left( {{2^x}{{\left( {\ln 2} \right)}^2}} \right) = {\left( {\ln 2} \right)^2}\left( {{2^x}\ln 2} \right) = {2^x}{\left( {\ln 2} \right)^3} \cr & {\text{Therefore, we can conclude that}} \cr & \frac{{{d^n}}}{{d{x^n}}}\left( {{2^x}} \right) = {2^x}{\left( {\ln 2} \right)^n} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.