Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 47

Answer

$x=-1$

Work Step by Step

We are given the function: $h(x)=\dfrac{e^x}{(x+1)^3}$ Compute $\lim\limits_{x \to a} h(x)=\lim\limits_{x \to a} \dfrac{e^x}{(x+1)^3}$ The denominator is 0 for $x=-1$. For $a=-1$ we have: $\lim\limits_{x \to -1^-} \dfrac{e^x}{(x+1)^3}=-\infty$ $\lim\limits_{x \to -1^+} \dfrac{e^x}{(x+1)^3}=\infty$ Therefore $h(x)$ has a vertical asymptote in $x=-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.