Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 29

Answer

$a-\\\lim\limits_{x \to 5}\frac{x-5}{x^2-25}=\lim\limits_{x \to 5}\frac{x-5}{(x-5)(x+5)}=\lim\limits_{x \to 5}\frac{1}{x+5}=\frac{1}{10}\\ since\,the\,limit\,exist\,\\there\! fore\,\,there\,is\,no\,\,\,vertical\,asymptote\,at\,x=5 \\ $ $b-\\ \lim\limits_{x \to -5^-}\frac{x-5}{x^2-25}=\lim\limits_{x \to-5^-}\frac{x-5}{(x-5)(x+5)}=\lim\limits_{x \to -5^-}\frac{1}{x+5}=-\infty \\ (the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\ (so\,\,there\,is\,\,vertical\,asymptote\,at\,x=-5 )\\ c-\\ \lim\limits_{x \to -5^+}\frac{x-5}{x^2-25}=\lim\limits_{x \to-5^+}\frac{x-5}{(x-5)(x+5)}=\lim\limits_{x \to -5^+}\frac{1}{x+5}=\infty \\ (the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\ (so\,\,again\,there\,is\,\,vertical\,asymptote\,at\,x=-5 )\\ $

Work Step by Step

$\lim\limits_{x \to 5}\frac{x-5}{x^2-25}=\lim\limits_{x \to 5}\frac{x-5}{(x-5)(x+5)}=\lim\limits_{x \to 5}\frac{1}{x+5}=\frac{1}{10}\\ since\,the\,limit\,exist\,\\there\! fore\,\,there\,is\,no\,\,\,vertical\,asymptote\,at\,x=5 \\ $ $\lim\limits_{x \to -5^-}\frac{x-5}{x^2-25}=\lim\limits_{x \to-5^-}\frac{x-5}{(x-5)(x+5)}=\lim\limits_{x \to -5^-}\frac{1}{x+5}=-\infty \\ (the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\ (so\,\,there\,is\,\,vertical\,asymptote\,at\,x=-5 )\\ \lim\limits_{x \to -5^+}\frac{x-5}{x^2-25}=\lim\limits_{x \to-5^+}\frac{x-5}{(x-5)(x+5)}=\lim\limits_{x \to -5^+}\frac{1}{x+5}=\infty \\ (the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\ (so\,\,again\,there\,is\,\,vertical\,asymptote\,at\,x=-5 )\\ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.