Answer
$a-\\\lim\limits_{x \to 7^-}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to 7^-}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to 7^-}\frac{1}{x^2(x-7)}=-\infty \\
(the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\
(so\,\,there\,is\,\,vertical\,asymptote\,at\,x=7 )\\
b-\\\lim\limits_{x \to 7^+}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to 7^+}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to 7^+}\frac{1}{x^2(x-7)}=\infty \\
(the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\
(so\,\,again\,there\,is\,\,vertical\,asymptote\,at\,x=7 )\\
c-\\\lim\limits_{x \to -7}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to -7}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to -7}\frac{1}{x^2(x-7)}=-\frac{1}{686} \\
since\,the\,limit\,exists\,\\
there\,is\,\,no\,\,vertical\,asymptote\,at\,x=-7
$
$d-\\
\lim\limits_{x \to 0}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to 0}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to 0}\frac{1}{x^2(x-7)}=-\infty \\
(the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\
(so\,\,there\,is\,\,vertical\,asymptote\,at\,x=0 )\\
$
Work Step by Step
$a-\\\lim\limits_{x \to 7^-}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to 7^-}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to 7^-}\frac{1}{x^2(x-7)}=-\infty \\
(the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\
(so\,\,there\,is\,\,vertical\,asymptote\,at\,x=7 )\\
b-\\\lim\limits_{x \to 7^+}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to 7^+}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to 7^+}\frac{1}{x^2(x-7)}=\infty \\
(the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\
(so\,\,again\,there\,is\,\,vertical\,asymptote\,at\,x=7 )\\
c-\\\lim\limits_{x \to -7}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to -7}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to -7}\frac{1}{x^2(x-7)}=-\frac{1}{686} \\
since\,the\,limit\,exists\,\\
there\,is\,\,no\,\,vertical\,asymptote\,at\,x=-7
$
$d-\\
\lim\limits_{x \to 0}\frac{x+7}{x^4-49x^2}=\lim\limits_{x \to 0}\frac{x+7}{x^2(x+7)(x-7)}=\lim\limits_{x \to 0}\frac{1}{x^2(x-7)}=-\infty \\
(the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\
(so\,\,there\,is\,\,vertical\,asymptote\,at\,x=0 )\\
$