Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 34

Answer

$f(x)\,\,has\,no\,\,vertical\,asymptotes\, \\$

Work Step by Step

$f(x)=\frac{x^3 - 10x^2 + 16x}{x^2 - 8x}=\frac{x(x-2)(x-8)}{x(x-8)}\,\\ for\,any\,\,a \\ \lim\limits_{x \to a}f(x)=\lim\limits_{x \to a}\frac{x^3 - 10x^2 + 16x}{x^2 - 8x}=\lim\limits_{x \to a}\frac{x(x-2)(x-8)}{x(x-8)}\,=\lim\limits_{x \to a}x-2\\ which\,is\,defind\,for\,any\,a\in \mathbb{R} \\ since\,the\,limit\,exists\,\\ there\,is\,\,no\,\,vertical\,asymptotes\, \\ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.