Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 38

Answer

$\lim\limits_{\theta \to \frac{\pi}{2}^+}\frac{1}{3}\tan \theta =\lim\limits_{\theta \to \frac{\pi}{2}^+}\frac{\sin \theta }{3\cos \theta }=-\infty \\ as\,\theta\,\,approach\,\,\frac{\pi}{2}\,from\,right\,(second\,quadrant)\\\sin \theta\,is\,positive\,and\,approach\,1\\ \cos \theta\,is\,negative\,and\,approach\,0 \\ $

Work Step by Step

$\lim\limits_{\theta \to \frac{\pi}{2}^+}\frac{1}{3}\tan \theta =\lim\limits_{\theta \to \frac{\pi}{2}^+}\frac{\sin \theta }{3\cos \theta }=-\infty \\ as\,\theta\,\,approach\,\,\frac{\pi}{2}\,from\,right\,(second\,quadrant)\\\sin \theta\,is\,positive\,and\,approach\,1\\ \cos \theta\,is\,negative\,and\,approach\,0 \\ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.