Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 45

Answer

$x=0$

Work Step by Step

We are given the function: $f(x)=\dfrac{x^2-3x+2}{x^{10}-x^9}$ Compute $\lim\limits_{x \to a} f(x)=\lim\limits_{x \to a} \dfrac{x^2-3x+2}{x^{10}-x^9}=\lim\limits_{x \to a} \dfrac{x^2-x-2x+2}{x^9(x-1)}$ $=\lim\limits_{x \to a} \dfrac{x(x-1)-2(x-1)}{x^9(x-1)}=\lim\limits_{x \to a} \dfrac{(x-1)(x-2)}{x^9(x-1)}$ $=\lim\limits_{x \to a} \dfrac{x-2}{x^9}$ For $a=0$ we have: $\lim\limits_{x \to 0^-} \dfrac{x-2}{x^9}=\infty$ $\lim\limits_{x \to 0^+} \dfrac{x-2}{x^9}=-\infty$ Therefore $f(x)$ has a vertical asymptote in $x=0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.