Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 32

Answer

$there\,is\,\,vertical\,asymptote\,at\,\\x=0,\,x=-2 \\ $

Work Step by Step

$f(x)=\frac{cos\,x}{x^2+2x}=\frac{cos\,x}{x(x+2)}\\ so\,\,we\,\,will\,\,see\, if\,there\,is\,vertical\,asymptote\,at\\\,x=0,x=-2\\\\ \lim\limits_{x \to 0}\frac{cos\,x}{x^2+2x}=\lim\limits_{x \to 0}\frac{cos\,x}{x(x+2)}\\ cos\,x\,approach\,1 \\ when\,x\,approach\,\,0\,from\,left\,\\ \lim\limits_{x \to 0^-}\frac{cos\,x}{x^2+2x}=\lim\limits_{x \to 0^-}\frac{cos\,x}{x(x+2)}=-\infty \\ (the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\ when\,x\,approach\,\,0\,from\,right\,\\ \lim\limits_{x \to 0^+}\frac{cos\,x}{x^2+2x}=\lim\limits_{x \to 0^+}\frac{cos\,x}{x(x+2)}=\infty \\ (the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\ so\,there\,is\,\,\,vertical\,asymptote\,at\,x=0 \\ $ $\lim\limits_{x \to -2}\frac{cos\,x}{x^2+2x}=\lim\limits_{x \to -2}\frac{cos\,x}{x(x+2)}\\ cos\,x\,approach\,-0.416 \\ when\,x\,approach\,\,-2\,from\,left\,\\ \lim\limits_{x \to -2^-}\frac{cos\,x}{x^2+2x}=\lim\limits_{x \to -2^-}\frac{cos\,x}{x(x+2)}=-\infty \\ (the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\ when\,x\,approach\,\,0\,from\,right\,\\ \lim\limits_{x \to -2^+}\frac{cos\,x}{x^2+2x}=\lim\limits_{x \to -2^+}\frac{cos\,x}{x(x+2)}=\infty \\ (the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\ so\,there\,is\,\,\,vertical\,asymptote\,at\,x=-2 \\ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.