Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 31

Answer

$there\,is\,\,vertical\,asymptote\,at\,x=3$

Work Step by Step

$f(x)=\frac{x^2-9x+14}{x^2-5x+6}=\frac{(x-2)(x-7)}{(x-2)(x-3)}\\ so\,\,we\,\,will\,\,see\, if\,there\,is\,vertical\,asymptote\,at\,x=2,x=3\\\\ \lim\limits_{x \to 2}\frac{x^2-9x+14}{x^2-5x+6}=\lim\limits_{x \to 2}\frac{(x-2)(x-7)}{(x-2)(x-3)}=\lim\limits_{x \to 2}\frac{x-7}{x-3}=5 \\ since\,the\,limit\,exists\,\\ there\,is\,\,no\,\,vertical\,asymptote\,at\,x=2 \\ \lim\limits_{x \to 3}\frac{x^2-9x+14}{x^2-5x+6}=\lim\limits_{x \to 3}\frac{(x-2)(x-7)}{(x-2)(x-3)}=\lim\limits_{x \to 3}\frac{x-7}{x-3}\\ when\,\,x\,approach\,3\,from\,\,\,left \\ \lim\limits_{x \to 3^-}\frac{x^2-9x+14}{x^2-5x+6}=\lim\limits_{x \to 3^-}\frac{x-7}{x-3}=-\infty \\ (the\,denominator\,is\,negative\,and\,approach\,\,\,0)\\ when\,\,x\,approach\,3\,from\,\,\,right \\ \lim\limits_{x \to 3^+}\frac{x^2-9x+14}{x^2-5x+6}=\lim\limits_{x \to 3^+}\frac{x-7}{x-3}=\infty \\ (the\,denominator\,is\,positive\,and\,approach\,\,\,0)\\ (so\,\,there\,is\,\,vertical\,asymptote\,at\,x=3 )\\ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.