Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 87: 35

Answer

$\lim\limits_{\theta \to 0^+}\csc \theta =\lim\limits_{\theta \to 0^+}\frac{1}{\sin \theta }=+\infty\\ (as\,\theta\,approach\,0\,from\,left\,\, \sin \theta\,\,is\,positive\,and\,approach\,0) $

Work Step by Step

$\lim\limits_{\theta \to 0^+}\csc \theta =\lim\limits_{\theta \to 0^+}\frac{1}{\sin \theta }=+\infty\\ (as\,\theta\,approach\,0\,from\,left\,\, \sin \theta\,\,is\,positive\,and\,approach\,0) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.