Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 46

Answer

$$\frac{-1}{7}\ln |x|+\frac{1}{8}\ln|x+1|+\frac{1}{56}\ln |x-7|+C$$

Work Step by Step

Given $$\int \frac{d x}{x\left(x^{2}-6 x-7\right)} $$ Since \begin{align*} \frac{1}{x\left(x^{2}-6 x-7\right)}&=\frac{\mathrm{A}}{x}+\frac{\mathrm{B}}{x+1}+\frac{\mathrm{C}}{x-7}\\ &=\frac{A(x+1)(x-7)+Bx(x-7)+Cx(x+1)}{x\left(x^{2}-6 x-7\right)}\\ 1&=A(x+1)(x-7)+Bx(x-7)+Cx(x+1) \end{align*} Since \begin{align*} \text{at}\ x&= 0\ \ \ \ \ \ A=\frac{-1}{7}\\ \text{at}\ x&= -1\ \ \ \ \ \ B=\frac{1}{8}\\ \text{at}\ x&= 7\ \ \ \ \ \ C=\frac{1}{56} \end{align*} Then \begin{align*} \int \frac{1}{x\left(x^{2}-6 x-7\right)}dx&=\frac{-1}{7}\int\frac{1}{x}dx+\frac{1}{8}\int \frac{1}{x+1}dx+\frac{1}{56}\int \frac{1}{x-7}dx\\ &= \frac{-1}{7}\ln |x|+\frac{1}{8}\ln|x+1|+\frac{1}{56}\ln |x-7|+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.