Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 44

Answer

$$\frac{1}{2}x^2 \ln (x+12)-\frac{1}{2} \left(\frac{1}{2}(x-12)^2+144\ln|x+12|\right)+C$$

Work Step by Step

Given $$\int x \ln (x+12) d x$$ Let \begin{align*} u&=\ln (x+12)\ \ \ \ \ \ \ \ \ \ dv= xdx\\ du&=\frac{1}{x+12}dx\ \ \ \ \ \ \ \ v=\frac{1}{2}x^2 \end{align*} Then \begin{align*} \int x \ln (x+12) d x&=\frac{1}{2}x^2 \ln (x+12)-\frac{1}{2}\int \frac{x^2}{x+12}dx\\ &= \frac{1}{2}x^2 \ln (x+12)-\frac{1}{2}\int \left((x-12)+\frac{144}{x+12}\right) dx\\ &= \frac{1}{2}x^2 \ln (x+12)-\frac{1}{2} \left(\frac{1}{2}(x-12)^2+144\ln|x+12|\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.