Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 1

Answer

Use the trig substitution: $$ x+3 =\sqrt{21}\sin u\ \ \ \ \to \ \ \ \ dx= \sqrt{21}\cos udu$$

Work Step by Step

Given $$\begin{equation}\int \frac{x d x}{\sqrt{12-6 x-x^{2}}}\end{equation}$$ Since \begin{align*} 12-6 x-x^{2}&=-[x^{2}+6x-12]\\ &=-[(x+3)^2-12-9]\\ &=21-(x+3)^2 \end{align*} Then \begin{align*} \int \frac{x d x}{\sqrt{12-6 x-x^{2}}}&=\int \frac{x d x}{\sqrt{21-(x+3)^2}} \end{align*} Use the trigonometric substitution: $$ x+3 =\sqrt{21}\sin u\ \ \ \ \to \ \ \ \ dx= \sqrt{21}\cos udu$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.