Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 21

Answer

$$\frac{-x}{\sqrt{x^{2}-1}}+\ln |x+\sqrt{x^{2}-1}|+C$$

Work Step by Step

Given $$\int \frac{x^{2}}{\left(x^{2}-1\right)^{3 / 2}} d x $$ Let $$ x=\sec u\ \ \ \ \ \to\ \ \ dx=\sec u \tan udu$$ Then \begin{align*} \int \frac{x^{2}}{\left(x^{2}-1\right)^{3 / 2}} d x&=\int \frac{\sec ^{2} u(\sec u \tan u) d u}{\left(\sec ^{2} u-1\right)^{3 / 2}}\\ &= \int \frac{\sec ^{2} u(\sec u \tan u) d u}{\left(\tan ^{2} u\right)^{3 / 2}}\\ &=\int \frac{\sec ^{3} u d u}{ \tan ^{2} u }\\ &=\int \sec u\csc^2 udu \end{align*} Use integration by parts with $$U= \sec udu,\ \ \ dv=\csc^2 udu $$ Then \begin{align*} \int \frac{x^{2}}{\left(x^{2}-1\right)^{3 / 2}} d x&=\int \frac{\sec ^{2} u(\sec u \tan u) d u}{\left(\sec ^{2} u-1\right)^{3 / 2}}\\ &= \int \frac{\sec ^{2} u(\sec u \tan u) d u}{\left(\tan ^{2} u\right)^{3 / 2}}\\ &=\int \frac{\sec ^{3} u d u}{ \tan ^{2} u }\\ &=\int \sec u\csc^2 udu\\ &=-\sec u \cot u+\int \sec u \tan u \cot u \, d u\\ &=-\sec u \cot u+\int \sec u \, d u\\ &=-\sec u \cot u+\ln |\sec u+\tan u|+C\\ &= \frac{-x}{\sqrt{x^{2}-1}}+\ln |x+\sqrt{x^{2}-1}|+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.